Glucose meter QC – too much?

dsc_1445edp

A colleague has been corresponding with me about glucose meter QC and recently sent me this paper. Basically, the authors are concerned about the high cost of QC for glucose meters and have data in their paper to show that their glucose meters are very reliable.

Actually, they state their meters are better than highly reliable because to quote from their paper: “no meter failure is detected by current QC testing procedure”. Well, not so fast. In some cases a repeated QC failure was corrected by using a new vial of strips. To me, this indicates a basic misunderstanding of glucose meters. One can think of the glucose meter testing process as having three components:

 

  1. The user – who must correctly use the meter
  2. The reagent strip – this is where the chemistry occurs
  3. The meter – hardware and software with the outcome being a glucose result

 

It seems as if these authors consider the meter as the item to be controlled. Yet it is highly unlikely that the meter could provide incorrect results – certainly no results if a meter’s hardware failed. But the reagent strip is where the action occurs and a bad strip could cause wrong answers, so in the authors’ study, QC did detect bad strips and presumably prevented wrong results.

I will comment at a later date about QC and user error.

What if the authors had shown no failures due to QC. Does that justify reducing QC to perhaps a monthly (as suggested by CMS) or less frequency? Cost is an important issue. But the purpose of QC is to detect errors. QC is not useless if no errors are found.

The purpose of QC is to detect errors to prevent an incorrect result to be reported. This is to prevent a clinician from making the wrong medical decision – based on test error, which causes harm to the patient. Hence, an assumption is that a correct result is needed to prevent patient harm. (If this is not the case, then one can argue that no QC is needed nor is the test needed in the first place).

But the frequency of QC actually detecting errors is not important as long as it can been shown that QC can detect errors. If the system is reliable, the error rate will be low.

The message is one would never remove safeguards just because of low error rates. For example, in hospitals and nuclear power plants, monitoring for radiation is a QC like practice and costs money. The frequency of problems is not relevant.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: