Six comments about risk management for labs

March 24, 2014

risk

Inspired by a post by Sten Westgard, here is my list on risk management for labs.

  1. One can apply simple risk management to before and after EQC. Before, many patient results were protected from many process faults because twice daily QC would pick up the fault in time for the results to be repeated. After EQC, the risk of reported wrong patient results was higher because there could be a month before a fault was detected. Thus, EQC never made sense.
  2. The comments in Sten’s posting that “it’s up to the lab director” are similar to CLSI statements about requirements in many of their evaluation protocol documents.
  3. The CLSI EP23 document about risk management for the lab was written by a group that was largely untrained in risk management. (This group had high expertise in other areas). Hence, the document is non-standard with respect FMEA and fault trees. Moreover, it focuses on analytical faults that have been largely validated by the manufacturer but the document neglects lab user error.
  4. Hospitals are required (at least they used to be) to perform at least one FMEA per year. In my experience in trying to provide software for this, the hospitals had little interest in actually performing a FMEA. Without guidance, training, and some prescriptive methods, risk management in labs is suspect.
  5. The situation wasn’t much different for in vitro diagnostic manufacturers. I’ve never met an engineer who willingly participated in risk management activities.
  6. The IHI (Institute for Healthcare Improvement) has a method for implementing FMEAs that is almost guaranteed to cause problems since it looks for a numerical reduction in “risk”. Take surgery as an example and I simplify things for illustration. You score severity and probability of occurrence of each event, multiply the severity x probability and add up for all events. For example, wrong site surgery would get severity=5 (the highest), probability=1 (the lowest) for a 5. Waiting more than an hour for an appointment would get severity=1 (the lowest), probability=5 (the highest) for a 5. BUT, in general you can’t change severity, only probability so in this case, you would try to change the appointment process and ignore the wrong site surgery. (The wrong site surgery probability is already at the lowest value of 1.) Your overall number would improve (in this case the initial 10 would be reduced) and you would declare victory. But in spite of the universal protocol (to prevent wrong site surgery), there is still room for improvement, so this IHI program focuses on less severe items and ignores the important ones.

What’s needed is training on standard methods in risk management for labs.

Advertisements

The ISO process and glucose meter standards

March 12, 2014

stop

As readers probably know, I objected to the ISO standard 15197 for glucose meters issued in 2003 because 5% of the results were unspecified. My objections were made – in vain – before the standard was issued with emails to the ISO chairholder. But as it turns out, I wasn’t the only one who questioned the logic of having 5% of the results as unspecified. I came across this email from 2002 as I was cleaning up my PC. The response from the chairholder to the other person objecting was interesting. He said the comment had been brought up “too late in the process – in fact, outside the process.  If the comment had come in with the US vote, we would have been obliged to address it.”

It seems to me if the comment is valid it needs to be addressed – period.


Glucose modeling battles

March 11, 2014

debate

There is an upcoming article in Clinical Chemistry accompanied by an editorial which features another Boyd and Bruns modeling of glucose errors. This time the paper’s focus is on measurement frequency for CGM (continuous glucose monitoring) monitors. BUT … the modeling is the same – namely the use of the Westgard model where average bias and imprecision are equated to total error.

Now I have an upcoming paper which tries to show the limitations of their approach – I realize that their paper was in the works before my paper appeared – so we’ll see if I have an impact. Previously, my efforts to show the limitations of this modeling were not successful in so far as Boyd and Bruns continued to publish papers using their model as is.

Note: Subscription(s) may be required to view these papers.


Clamps for filming while flying

March 11, 2014

clamp

I’ve been filming my flights for some time. Originally, I attached a camera to a suction mount but it fell shortly after I started the engine. I tried it on another flight with the same result. I realized that even if I replaced the suction mount, I’d always being worrying about it falling. So I turned to the clamp mounts. Here are the ones I use:

The SafeRacer clamp is inexpensive and relatively versatile.

http://www.saferacer.com/chase-cam-universal-clamp-camera-mount?gclid=CPnsm9PL87wCFQHNOgodkC8AcQ

I often use this clamp with an iPhone 5, which requires an adapter: http://www.rakuten.com/SR/SearchResults.aspx?mfgid=391307

The Mini Cardellini with Noga Arm aka Israeli Arm is the Cadillac of clamps.

http://www.filmtools.com/mini-cardellini-noga-arm.html

Strut mount – This fits on the strut of a Cessna

http://www.aerovideo.net/